Core Mathematics C2 Paper I

1. The sequence $u_{1}, u_{2}, u_{3}, \ldots$ is defined by

$$
u_{n}=2^{n}+k n
$$

where k is a constant.
Given that $u_{1}=u_{3}$,
(i) find the value of k,
(ii) find the value of u_{5}.
2. Given that

$$
y=2 x^{\frac{3}{2}}-1
$$

find

$$
\begin{equation*}
\int y^{2} \mathrm{~d} x . \tag{6}
\end{equation*}
$$

3. (i) Sketch the curve $y=\sin x^{\circ}$ for x in the interval $-180 \leq x \leq 180$.
(ii) Sketch on the same diagram the curve $y=\sin (x-30)^{\circ}$ for x in the interval $-180 \leq x \leq 180$.
(iii) Use your diagram to solve the equation

$$
\sin x^{\circ}=\sin (x-30)^{\circ}
$$

for x in the interval $-180 \leq x \leq 180$.
4. (i) Solve the inequality

$$
\begin{equation*}
x^{2}-13 x+30<0 \tag{3}
\end{equation*}
$$

(ii) Hence find the set of values of y such that

$$
\begin{equation*}
2^{2 y}-13\left(2^{y}\right)+30<0 . \tag{3}
\end{equation*}
$$

5.

The diagram shows the curve $y=\mathrm{f}(x)$ where

$$
\mathrm{f}(x)=4+5 x+k x^{2}-2 x^{3}
$$

and k is a constant.
The curve crosses the x-axis at the points A, B and C.
Given that A has coordinates $(-4,0)$,
(i) show that $k=-7$,
(ii) find the coordinates of B and C.
6. Given that

$$
\mathrm{f}^{\prime}(x)=5+\frac{4}{x^{2}}, \quad x \neq 0,
$$

(i) find an expression for $\mathrm{f}(x)$.

Given also that

$$
f(2)=2 f(1),
$$

(ii) find $\mathrm{f}(4)$.
7.

The diagram shows a design painted on the wall at a karting track. The sign consists of triangle $A B C$ and two circular sectors of radius 2 metres and 1 metre with centres A and B respectively.

Given that $A B=7 \mathrm{~m}, A C=3 \mathrm{~m}$ and $\angle A C B=2.2$ radians,
(i) find the size of $\angle A B C$ in radians to 3 significant figures,
(ii) show that $\angle B A C=0.588$ radians to 3 significant figures,
(iii) find the area of triangle $A B C$,
(iv) find the area of the wall covered by the design.
8. The finite region R is bounded by the curve $y=1+3 \sqrt{x}$, the x-axis and the lines $x=2$ and $x=8$.
(i) Use the trapezium rule with three intervals, each of width 2, to estimate to 3 significant figures the area of R.
(ii) Use integration to find the exact area of R in the form $a+b \sqrt{2}$.
(iii) Find the percentage error in the estimate made in part (a).
9. The first two terms of a geometric progression are 2 and x respectively, where $x \neq 2$.
(i) Find an expression for the third term in terms of x.

The first and third terms of arithmetic progression are 2 and x respectively.
(ii) Find an expression for the 11th term in terms of x.

Given that the third term of the geometric progression and the 11th term of the arithmetic progression have the same value,
(iii) find the value of x,
(iv) find the sum of the first 50 terms of the arithmetic progression.

